Construction of an autonomous driving model vehicle

Procedural track generation
for driving simulations

Callum Munro, Roman Wecker, Biinyamin Oriimcek

June 2021

Hochschule Kempten
University of Applied Sciences
Fakultit Informatik

CONSTRUCTION OF AN AUTONOMOUS DRIVING MODEL VEHICLE, UNIVERSITY OF APPLIED SCIENCES KEMPTEN 1

Procedural track generation
for driving simulations

Callum Munro, Roman Wecker, Biinyamin Oriimcek

Abstract—This paper introduces a method for generating
round courses based on the VDI or Carolo Specification and
shows how to export them to the OpenDRIVE-Format. The
method shown in this paper uses a graph and the A* algorithm
to create tracks. These tracks are meant to be used for testing
algorithms and training AI. Because of this, a great variety of
tracks is needed. To achieve this, the weights for the edges are
based on noise functions. The paper also presents a possible way
to place traffic signs based on the track’s geometry and road
marking.

Index Terms—noise functions, procedural generation, A* al-
gorithm, pathfinding, VDI Cup, Carolo Cup, race track, driving
simulation.

1. INTRODUCTION

Simulations have a lot of advantages compared to
experiments, when it comes to driving: They often cost less,
can be sped up, allow for simple data collection, allow for
testing dangerous scenarios(E.g. a child runs on to the street)
without actually endangering anyone and also allow for a
greater variety of test cases. For driving simulations a track
is often needed. Those tracks can be modelled by hand, using
real world data or procedurally.

The simulations that are supposed to run, using these tracks,
are mainly used to test algorithms for self-driving miniature
cars, which compete in the Carolo Cup and VDI Cup and train-
ing neural networks for those cars. It was therefore important
that the approach would generate tracks that are permissible
for the Cups’s specifications. In this paper, we present an
approach for generating differentiating round courses for those
Cups.

II. METHOD

A. Track Generator

Straight Curve 90

Crossing

Curve 45

YWDl start area

Figure 1: All possible segments for both cups

The tracks of the VDI and Carolo Cup can be divided
into individual segments (see Fig. 1). With these segments
the entire circuit can be built. Therefore, a grid-based method
was chosen for the generation of the track. Both Cups have
90° and 45° curves and all segments exist in all 45° rotated
variants. This means that the algorithm can search horizontally,
vertically and diagonally in the grid. Both Cups have a special
starting area. In terms of generation, the main difference
between these two Cups is that the Carolo Cup has crossing
segments.

The semester project “Construction of an autonomous
driving model vehicle” needs a large amount of randomly
generated tracks to create a dataset to train future Als and
test algorithms. This variety of different tracks are achieved
with fractal noise functions.

The Algorithm: Track generation process

Input —‘ Pathfinding
Paints and
Track
- Chose Next Pathto |5%9™"S[Driver
Initialize : :
Two Points Track Track Perspective

Output

Image

Noise
Closed

Figure 2: Overview of the track generator algorithm

CONSTRUCTION OF AN AUTONOMOUS DRIVING MODEL VEHICLE, UNIVERSITY OF APPLIED SCIENCES KEMPTEN 2

This section presents the track generation method. The
initial state of the generator is that at least 2 points and a
fractal noise function are given. The order of the points is
important, because it determines which points are connected.
At the beginning, a path between the first two points is
searched using the A* algorithm, where the noise function
equals the cost of a grid cell. This process is repeated until the
last point is reached. At the end, the last point is connected
to the first and thus the track is closed.

As input paramaters, the track generator needs a list of
points, the grid size, the fractal noise function, Cup speci-
fication, and a scaling variable, wich determines how much
the noise affects the path finding.

Table 1: Parameters used in the following algorithms

Parameter Name Value
P current point -
cs crossing point 3
cc crossing counter 2
Piast last point -
P start point -
P. end point -

The parameter cs in Table 1 determines from which point
a crossing should be generated and cc specifies how many
crossings there should be. Start and endpoints define which
points are to be connected by the A* algorithm.

Algorithm 1: Track generator Initialize

1) Reset all previous values.

2) Create an open-, closed-, distancePlusHeuristic- and a
previous-list.

3) Depending on the cup specification, add an artificial
point after the first point.

4) If VDI Cup, insert the start area between the first and
the artificial point, otherwise add Carolo starting path.

5) Move all input points out of the area of the first and
artificial point.

In the Initialize part, the track generator ensures that given
points are valid and resets all previous values. In addition, for
the VDI Cup, the start area is added to the path beginning
from the first point to the right until it reaches the artificial
point. For the Carolo Cup, a straight path is created instead,
offset by its width.

Algorithm 2: Choose next two points

1) Close a 2x2 area starting from the first input point.

2) Close the already found path extended by one grid cell
in all cardinal directions. Close all unused input points.

3) If P > Py, then set Py = P, and P, = first point

4) Otherwise if it is the Carolo Cup and P > cs and cc
> 0, perform a bounding box check only once. If the
check failed, place a crossing. Set the next Py and P,
as crossing connection points until cc < 0. Save all
crossing indices temporarily.

5) Otherwise set Py = P and P. = next point.

6) Do pathfinding between Ps and P, using A* algorithm
and noise as cost.

7) Repeat steps 1 - 6 until path is closed, P > Pjy.

8) Draw the noise, the given points and the found path
into a new image.

9) Call Algorithm 3.
10) Call Algorithm 4.

11) Return final image.

Algorithm 2 is the core of the track generation. It ensures

that the first point always remains reachable. It also adds
all path cells found so far extended by one grid cell in all
cardinal directions to the closed list. This way path segments
have a minimum distance of one grid cell and cannot overlap.
The generator always connects the current point with the next
point, whereby there are two special cases. One special case
is that the last point P,y has been reached. When this point
is reached, the last point Py, is connected to the first point so
that the track closes.
The other case applies only to the Carolo Cup. If the crossing
point cs is reached, the algorithm tries to add a crossing at
this point. For this purpose, it forms a vector ' between the
previous and current path segment. The vector ¢’ is used to
check whether a crossing can be placed and does not intersect
with any closed cells or input points. This is done from the
current point with a bounding box check in the range of [0;
2-9] to [-2-5; 2-5], with b a perpendicular vector to . If the
check failed, the track generator selects a perpendicular vector
§ for which the following two statements are true:

1) The euclidean distance between the west/east point of
the crossing to the next input point is shorter.

2) A Raycast with width of two from the west/east point
of the crossing to the next input point is not blocked.

When the perpendicular vector § is found, the algorithm
adds four points in the direction ¥ to the path. The first and
the third become the crossing segments. Each crossing has

CONSTRUCTION OF AN AUTONOMOUS DRIVING MODEL VEHICLE, UNIVERSITY OF APPLIED SCIENCES KEMPTEN 3

exactly three points that can be connected, since the north
side is always connected with the main path.

At first, the south side of the second crossing connects to its
west/east side according to the vector -5. Then the west/east
side of the second crossing is connected according to the
vector § with the same cardinal direction as the first crossing.
The crossing is completed by connecting the last remaining
side of the first crossing with the next input point, or the first
input point if the crossing point was the last.

Once the track generator has treated all input points, an
image is created. In this image the noise, the input points
and the found path are drawn. Then the segments are inserted
with algorithm 3. After the segments have been determined,
they are saved in a list in driver perspective with algorithm 4.
Finally, the image for the UI is returned (see Fig. 3).

Algorithm 3: Path to Track

1) Starting from the current cell, compare the previous
and next path cells with each other.

2) Determine the logical segment depending on step 1.

3) Draw found segments into the image.

With Algorithm 3: Path to Track the positions of the
previous and next path cells are compared. From this
comparison, the correct segment can be determined logically.
An example would be that if a previous cell is left and the
next cell is right then it can only be a straight path segment.

Algorithm 4: Driver Perspective

1) For every Straight segment add a Drive Straight segment
into the driver perspective list.

2) For every Curve 90 segment add a Turn Left 90 or
Turn Right 90 segment into the driver perspective list.

3) For every Curve 45 segment add a Turn Left 45 or
Turn Right 45 segment into the driver perspective list.

4) For every Crossing segment add a Crossing segment
into the driver perspective list.

The exporter works in the driver perspective. This means
that the segments must be converted. From the driver’s
perspective, it does not matter if it is a 45 degree rotated
straight segment or not, because for the driver it is always a
straight path.

Figure 3: Generated VDI Cup (left) and Carolo Cup (right)

B. OpenDrive Exporter

The OpenDrive Exporter creates a road network from the
given route data and exports an .xodr file that can be used to
import the route into simulation software such as CarMaker
or Carla.

OpenDrive: Hierarchical tree structure

OpenDrive is an XML format where data is stored within
nodes in a tree structure. In many cases, we need to reference
nodes from other subtrees by their IDs. This makes object
accesses inconvenient and slow. A better approach is an
easily accessible C++ object structure of OpenDrive (see Fig.
4), where node data is stored inside objects, which can be
modified while the tree is set up. In a final step, all children
of the tree are traversed to generate the OpenDrive file.

Q
|
| |
‘ Header ‘ ‘ Road ‘ | Junction |
0
| RoadSegment ‘ | Signals |

Figure 4: Easily accessible C++ object structure of
OpenDRIVE

The Exporter class consists of an OpenDrive class that
contains the entire OpenDrive tree and a Combiner class that
is used to load additional information from other OpenDrive
files and append it within the tree structure. The OpenDrive
class consists of the Header, Road, and Junction classes.
The Header class contains generic header information. The
Road class consists of the RoadSegment and Signals classes.
An OpenDrive document can contain any number of roads
and a road can contain any number of road segments and
signals. The RoadSegment class contains the actual geometric
information of a road segment. The Signals class represents
a traffic sign placed along a road. The Junction class adds an
intersection between roads.

CONSTRUCTION OF AN AUTONOMOUS DRIVING MODEL VEHICLE, UNIVERSITY OF APPLIED SCIENCES KEMPTEN 4

Roads: Geometric approach

Each RoadSegment represents a planView element in Open-
Drive. A planView in OpenDrive (see Table 2) is defined by
its x and y position, inertial heading, segment length and an
attribute s, which specifies how far a car would need to travel
in a local s-t coordinate system, to reach the start point of this
segment. In other words the attribute s are the accumulated
lengths of all previous road segments.

Table 2: Attributes of the planView element [3]

Attribute Description Value

s s-coordinate of start position [0; 00

X Start position (x inertial)]—00; 00

y Start position (y inertial)]—o00; 00

hdg Start orientation (inertial heading)]—o00; 00

length Length of the element’s reference line [0; 00
1) Straights:

2)

There are two different types of straight lines that must
be treated separately (see Fig. 5).

Figure 5: Straights

Formula for the directions WEST, SOUTH, EAST,
NORTH

length = defaultLength

Formula for the directions NORTHEAST, SOUTH-
EAST, SOUTHWEST, NORTHWEST

length = \/2 - defaultLength?

90 Degree Curves:

There are two different types of 90 degree curves that
must be treated separately (see Fig. 6). Both lengths can
be determined as part of the circumference of a circle.

3)

Figure 6. 90 Degree Curves

Formula for the directions WEST, SOUTH, EAST,
NORTH

/\
_/

length = defaultLength - w - 0.25

Formula for the directions NORTHEAST, SOUTH-
EAST, SOUTHWEST, NORTHWEST

length = \/2 x defaultLength? - 7 - 0.25

90 degree curves can be described as an arc with
a constant curvature. The curvature can be calculated
using the two following formulas [4].

1 . length - curvature - 360°
Ulocal = - sin ()
curvature 2.7
1 length - curvature - 360°
Viocal = - cos ()
curvature 2.7

45 Degree Curves:

There are two different types of 45 degree curves that
must be treated separately (see Fig. 7). Cubic polyno-
mials can be used to find a curve, which is steady at the
start and end point.

Figure 7: 45 Degree Curves

Formula for the directions WEST, SOUTH, EAST,
NORTH
General polynomial of third degree

f(z) = ax® + ba® 4+ cx + d
f'(x) = 3aa® 4 2bx + ¢

CONSTRUCTION OF AN AUTONOMOUS DRIVING MODEL VEHICLE, UNIVERSITY OF APPLIED SCIENCES KEMPTEN 5

Conditions:
f(0)=0
f(defaultLength) = defaultLength/2
f(0)=0

f'(defaultLength) = 1

The searched function:
_defaultLength/2

= flz) = default Length?
Fla) =2 de faultLength/2 .
default Length?

The determination of the length:

defaultLength
length = / V1+ fl(x)dx
0

The formula for the directions NORTHEAST, SOUTH-
EAST, SOUTHWEST, NORTHWEST can be deter-
mined, for example, using the Lagrange interpolation
polynomial.

Combiner: Include external OpenDrive files

The Combiner class can be used to load additional infor-
mation from other OpenDrive files and append it inside the
tree structure. The OpenDrive specification offers a feature,
which allows to combine files. However the feature is not
available in CarMaker at the present time. Therefore, when
the file is written for the first time, include tags are added to
the XML structure. The Combiner class loads the written file
and replaces all includes with the actual files from the drive.
This makes it easy to load complex objects or reoccuring parts
throughout the document. The Combiner class is used to load
the corresponding start segments for Carolo and VDI and the
associated lane definitions.

Signals: OpenDrive traffic signs

Traffic signs in OpenDrive are placed inside a local s-t
coordinate system. As stated before, s is the sum of all lengths
of previous road segments. The t axis is perpendicular to s and
indicates how far a point is from the center of the road. Road
signs are placed procedurally along the road, based on specific
conditions.

1) No overtaking / No overtaking end

These traffic signs are automatically placed when a
road has a solid line.

2) Priority road / Give way
These traffic signs are automatically placed 5 meters
ahead of a crossing. The main crossing arm features a
priority road sign, the oncoming road a give way sign.

3) Speed limit zone / Speed limit zone end
A speed limit zone can occur at random positions,
under the condition that no other zones are active.

4) Pedestrian crossing
A pedestrian crossing has 50% chance to be spawned
inside a speed limit zone.

5) Limited access road / Limited access road end
For every segment inside a road the curvature is mea-
sured and accumulated. If the sum is low enough, which
means the road is almost straight, a limited access road
sign is placed. If the sum gets to high, which indicates
a curvy road layout, the limited access road end sign is
placed.

III. CONCLUSION

The approach shown in this paper quickly generates appro-
priate tracks for the Cups. Because it is a tile based approach
the variety of curves is limited. Therefore it would be best to
choose another approach or improve it, if a greater variety of
curves is needed.

Future Work: Known issues and suggestions

The OpenDrive format is currently only partially supported
by CarMaker and still has many limitations [S]. Work based
on this could consider implementing a Road5 exporter, since
Road5 is the primary file format used within CarMaker.

Future work could expand the number of crossings, which
is limited to exactly two or none. The decision of when to
insert a crossing could also be determined with an algorithm.
Furthermore poorly chosen points can cause the path to
enclose itself. Therefore finding a method for placing points
correctly could be interesting for future work.

ACKNOWLEDGMENT

We would like to thank Prof. Dr. Gohner, Stuhr and Hasel-
berger for supporting and helping us while working on this
project.

REFERENCES

[1] 1. ”Auburn” Peck: FastNoiseLite. Available online at
https://github.com/Auburn/FastNoiseLite, last checked on 30.06.2021.

[2] isaac computer science: A* search algorithm. Available online
at https://isaaccomputerscience.org/concepts/dsa_search_a_star, last
checked on 30.06.2021.

[3] ASAM e. V. OpenDRIVE 1.6. Available online at
https://releases.asam.net/OpenDRIVE/1.6.0/ASAM_OpenDRIVE_BS_V1-
6-0.html#_geometry, last checked on 01.07.2021.

[4] ASAM e.V.. ASAM OpenDrive Webinar Part 1. Available online at

https://www.youtube.com/watch?v=44Rm7hmqO2Mé&ab_channel=ASAMe.V.,

last checked on 01.07.2021.

[S] IPG Automotive: General Advice and Limitations of the OpenDRIVE
Import. Available online at https://ipg-automotive.com/support/client-
area/fag/ticket/general-advice-and-limitations-of-the-opendrive-import/,
last checked on 01.07.2021.

